ENGT4303 Assignment

Bernard Blackham (10216872)

Due: November 1, 2006

At 500 MHz, the s-parameters for the device are: { 0.5721767 0.05267 }

8.4/86° 0.14£ — 130°

. 0.60£156° 0.09£70°
At 1 GHz, the s-parameters for the device are: [44,750 011/ — 164°]

Test for stability

The Rollert Stability Factor K is given by
1= |Sul* = |Sn* +]A[

K = 1

2[S1252 | @

— 1.0213 @ 500 MHz 2)

— 1.0551 @ 1 GHz (3)

B1 is given by

Bl = 1+[Suf* —|Sul*—|A] (4)

— 1.103 @ 500 MHz (5)

— 1.140 @ 1 GHz (6)

At both frequencies, K > 1 and B1 > 0. Therefore, the device is unconditionally stable. We
examine the stability circles anyway.

The input stability circle is given by
(S22 — STA)”
|Sa|” — |A[?
= —0.873 — 50.907 @ 500 MHz
= —0.846 — j0.331 @ 1 GHz
512551
|1S22|* — A
= 2.298 @ 500 MHz
= 2.024 @ 1 GHz

CLoad

TLoad

In the case where Z; = Zj, as Sj; < 1, then |[I';y| < 1 and thus the center of the Smith chart
is the stable region.

Similarly, the output stability circle is given by:

CS ource

T'Source

(Su — S5,A)°

1S |” — A7

—4.442 + 0.149 @ 500 MHy

~3.376 — j1.361 @ 1 GHz
|512521|

1S = |AP?]

3.428 @ 500 MHz

2.601 @ 1 GHz

At 500 Mhz, the input and output stability circles are below.

At 1 GHz, the input and output stability circles are below.

Circles of Constant Gain

We assume that the input is conjugately matched, so Gy = Gp.

For 14 dB, Gp = 10'* = 25.12. We find:

Gp
9 = (7)
V4 |S21|2
25.12
W (8)
= 0.356 (9)
Soy — AS*)T
Cp = 9p (S22 > 1) . (10)
1+ g, (|S2|” — |A])
= 0.0608 4+ 50.0632 @ 500 MHz (11)
— 0.2879+j0.1126 @ 1 GHz (12)
1
. (1 — 2K |512521‘ 9p + |Sl2521\2g;,2,) : (13)
P p—
11+ g, (|S22]* — |A]%)]
= 0.9057 @ 500 MHz (14)
0.5682 @ 1 GHz (15)
(16)

These two circles are plotted below. Using Zgpp = 50€), we aim for the intersections of the
locus of values for which r = 1 intersects the constant gain curves. This occurs at two points
for each circle of constant gain, and are also shown on the diagram. The intersections of the
500 MHz circle and the Z, = Zgzpp are at (0.955,0.207) and (0.878,-0.327). These correspond
to impedances of 1 + 79.207 and 1 — j5.365, respectively. The intersections of the 1 GHz circle
and the Z; = Zpgyp are at (0.762, 0.426) and (0.294, -0.456). These correspond to impedances
of 14 73.578 and 1 — j1.290, respectively.

o,
L
X
RLRBAE
G aEaS s
LR
I

%
2

O s B!
el
98 utsse @

Output matching network design

In order to attain points on the circle of constant gain at both 500 MHz and 1 GHz, we use a
capacitor and inductor in series. The series capacitor also eliminates and DC component from
the load interfering with the operation of the circuit. As our targets, we choose the intersection
points at 1 — 75.365 on the 500 MHz circle and 1 — 51.290 on the 1 GHz circle.

Thus the reactive component is given by:

At 500 MHz:

L 1
—45.365 = 4§ x 27500 x 10°
J J e Zeor 7 % 27500 x 10°C Zrpr

1 1 1
—5.365 = 27500 x 10— — —
TV X T 50™ T 50 x 27500 x 106 C

Similarly at 1 GHz:

L 1
—41.290 = 427 x 10°
J Jem Zeor 727 % 109C Znpy
L 1 1

1290 = 27109 — — —— _—
T80 T B0 x 27109 C

This gives a set of simultaneous equations, with solution:

L = 14.76nH
1

— = 9879 x 10" F!
C X

C = 1.012pF

(19)

(20)
(21)

The change in impedance is shown in the smith charts below for 500, 700, 800 and 1000 GHz.

500 MHz

700 MHz

800 MHz

1 GHz

Input matching network design

As the constant gain curves were calculated under the assumption that the input was conju-
gately matched to the source, we have

I's = I, (29)
SIQSZlFL :
S —_— 30
n 1 — Spl'y (30)
= —0.792 — j0.313 @ 500 MHz (31)
— —0.548 — j0.449 @ 1 GHz (32)
14+ Iy
To = —— =2 33
8 1-Tg (33)
= 0.0833 — 50.1892 @ 500 MHz (34)
— 0.1916 — j0.3459 @ 1 GHz (35)
(36)

After much trial and error and attemping various combinations of series and parallel LC circuits,
no successful matching circuit could be found to achieve these values of Zg. Numerous methods
were used to search for a solution, including graphical manipulation with computer tools such
as “linsmith”; solving complex expressions for Zg, and algebraic manipulation.

The load-matching circuit may have to be modified in order to give a result, but time did not
allow this.

2SN
S
RSN

“
p0y 0
CSRESESE I
RSN
RS ‘:00“‘.‘

CSRIS
R
v,

Code listing for solving equations
#!/usr/bin/python

from math import x*
import sys

def to_cart(mag, deg):
rad = radians(deg)
return mag*(cos(rad) + 1j * sin(rad))

def to_polar(x):
ang = 0
if x.real == O:
ang = pi/2
else:
ang = atan(x.imag / x.real)
if x.real < O:

ang += pi
while ang > pi:
ang -= 2*pi

while ang < -pi:
ang += 2x*pi
return (abs(x), degrees(ang))

def csqrt(x):
(mag, deg) = to_polar(complex(x))
return to_cart(sqrt(mag), deg/2.)

def dB(x):
return 10 * log(x) / log(10)

def par(a,b):
return 1./(1./a + 1./b)

def LogFunc(s):
sys.stderr.write(s)

def is_sensible_range(f, lo, hi, sample_points = 50):
’?’Determines if a function goes up once and down once within the range
[lo, hi] at a certain number of sample points.
Returns a 2-tuple of booleans.
If the first tuple is true, the condition holds.
Otherwise, if the second tuple is True, the function was monotonic in the
range [lo, hi] (ie, range too small).
If the second tuple is False, the function went up and down at least once
in the range[lo, hi] (ie, range too large).’’’
x = lo
going_up = -2
changed = False

10

step = (hi - lo) / sample_points
#print ’\t\tis_sensible_range(f, %s, %s)’%(str(lo),str(hi))
while x < hi:
#print "Trying with", x, ’giving’, f(x)
res = f(x)
if going_up == -
Don’t have any data points yet. Will do next time.
going_up = -1
elif going_up == -
Now have a data point. Figure out which way we’re going
if prev_res < res:
going_up =1
else:
going up = 0
elif going_up == O:
if prev_res < res:

if changed:

return (False, False) # 2 changes of direction already. Quit it.
else:

changed = True

going_up = 1

elif going_up ==
if prev_res > res:

if changed:
return (False, False) # 2 changes of direction already. Quit it.
else:
changed = True
going_up = 0O
prev_res = res
X += step
All went well.

if changed:
return (True, True)
return (False, True)

def find_sensible_increment(f, start, start_incr):
’?’Determines an increment suitable to start solving for E with.’’’
lo = start
hi = start + start_incr
#print ’\t\tfind_sensible_increment (%s,%s) % (str(lo),str(hi))
sample_points = 50.
while True:
(good, too_small) = is_sensible_range(f, lo, hi, sample_points)
if good:
return (hi-lo)/sample_points/10
if too_small:
#print ’\ttoo small’, lo, hi
hi *= 2.
else:
#print ’\ttoo big’, lo, hi

11

def

def

hi /= 11.

solve(f, start_x, start_increment, limit):

’?°Solve for the function f(x) = O starting from start_x.’’’
Firstly find a sensible range to search in.

X = start_x

incr = find_sensible_increment(f, x, start_increment)
LogFunc(® .7)

sys.stdout.flush()

Find the point where the function crosses the axis.
prev_y = None
while True:
y = £f(x)
if prev_y != None and (y > 0 and prev_y < 0) or (y < 0 and prev_y > 0):
break
prev.y =Y
X += incr
if limit != None and x > limit:
LogFunc(’! at %g > %g\n’%(x, limit))
sys.stdout.flush()
return (None, start_increment, limit)
LogFunc(’.?)
sys.stdout.flush()

Solution lies between x-incr. and x. Go searching.
res = solve_for_zero(f, x-incr, x)

LogFunc(’.?)

return (res, x, incr)

solveit(wl, zl, w2, z2):
func = lambda w,Cs,Ls,Cp,Lp: par(1+1j*w*Ls-1.j/(wxCs), par(1j*wxLp, -1j/(w*xCp)))

Cs = le-12

Ls = 1e-9

Cp = le-12

Lp = 1e-9

#f = lambda w,Cs,Ls,Cp,Lp: par(1+1j*wkLs-1.j/(wxCs), par(1j*w*Lp, -1j/(wxCp)))
params = [Cs, Ls, Cp, Lpl

things = [’Cs’, ’Ls’, ’Cp’, ’Lp’]
while True:
(Cs, Ls, Cp, Lp) = params
print "Cs = %g Ls = %g Cp = %g Lp = %g"%(Cs, Ls, Cp, Lp)
Z = func(wl, Cs, Ls, Cp, Lp)
print "At 500 MHz:"
print " Want:", z1l
print " Got :", Z
Z = func(w2, Cs, Ls, Cp, Lp)

12

def

print "At 1000 MHz:"

print " Want:", z2
print " Got :", Z
print

print "Change (1 = Cs, 2 =Ls, 3 =Cp, 4 = Lp) ?",
s = sys.stdin.readline() .strip()

if s == ’’: break

which = ord(s[0]) - ord(’1”)

if which < 0 or which > 3: continue

print "Enter %s:"%(things[which]),

s = sys.stdin.readline() .strip()

if s == ’’: continue

params [which] = float(s)

return (Cs, Ls, Cp, Lp)

solveit(wl, zl1, w2, z2):
func = lambda w,Cs,Ls,Cp,Lp: par(1+1j*wxLs-1.j/(wxCs), par(lj*wxLp, -1j/(w*Cp)))

Cs
Ls

Cp
Lp

#£

le-12
1le-9
le-12
1le-9

lambda w,Cs,Ls,Cp,Lp: par(1+1j*wxLs-1.j/(wxCs), par(1lj*wxLp, -1j/(w*Cp)))

params = [Cs, Ls, Cp, Lpl
things = [’Cs’, ’Ls’, ’Cp’, ’Lp’]
while True:

(Cs, Ls, Cp, Lp) = params

print "Cs = %g Ls = %g Cp = %g Lp = %g"%(Cs, Ls, Cp, Lp)
Z = func(wl, Cs, Ls, Cp, Lp)

print "At 500 MHz:"

print " Want:", z1

print " Got :", Z

Z = func(w2, Cs, Ls, Cp, Lp)

print "At 1000 MHz:"

print " Want:", z2
print " Got :", Z
print

print "Change (1 = Cs, 2 =Ls, 3 =Cp, 4 = Lp) 7",
s = sys.stdin.readline() .strip()

if s == ?’: break

which = ord(s[0]) - ord(’1?)

if which < 0 or which > 3: continue

print "Enter %s:"%(things[which]),

s = sys.stdin.readline() .strip()

if s == ?’: continue

params [which] = float(s)

13

return (Cs, Ls, Cp, Lp)

gainDb = 14
ranges = [
["500 MHz",

to_cart(0.57, 176), to_cart(0.05, 67),
to_cart(8.4, 86), to_cart(0.14, -130),

1 - 5.365j,
1,
["1 GHz",
to_cart(0.60, 156), to_cart(0.09, 70),
to_cart(4.4, 75), to_cart(0.11, -164),
1 - 1.2907,
1,
]
for (freq, S11, S12, S21, S22, Z1) in ranges:
print " ------- @ %s"h(freq)
Det = S11%S22 - S12%S21
print " Det =", Det
print "|Det| =", abs(Det)

Cl1 = S11 - Det * S22.conjugate()

Bl = 1 + abs(S11)**2 - abs(S22)**2 - abs(Det)x*2
C2 = S22 - Det * S11.conjugate()
B2 = 1 + abs(S22)**2 - abs(S11)**2 - abs(Det)**2

K = (1 + abs(Det)**2 - abs(S11)**2 - abs(S22)**2) / (2. * abs(S12 * S21))
D2 = abs(S22)**2 - abs(Det) **2
Gammal. = 0.9642304

Rollert Stability Factor K
print ’K =’, K
print ’Bl =’, Bl

Input Stability Circle

Cload = (822 - Sil.conjugate() * Det).conjugate() / (abs(822)**2 - abs(Det)**2)
rload = abs((S12%521)) / abs(abs(S22)**2 - abs(Det)**2)

print ’Cload =’, Cload

print ’rload =’, rload

Output Stability Circle

Csource = (811 - S22.conjugate()*Det).conjugate() / (abs(S11)**2 - abs(Det)**2)
rsource = abs(S12xS21) / abs(abs(S11)**2 - abs(Det)**2)

print ’Csource =’, Csource

print ’rsource =’, rsource

Maximum power gain
Gmax = abs(S21)/abs(S12) * (K - csqrt(K*x2 - 1))

Operating gain
gp = (1 - abs(GammaL)**2) / \

14

(abs(1l - S22xGammal)**2 - abs(S11 - DetxGammal)**2)
Gp = abs(821)**2 x gp
print ’Gp =’, Gp, ’=’, dB(Gp), ’dB’

Circle of constant gain
Gp = 10.**(gainDb/10.)

gp = Gp / (abs(S21)*%2)
Cp = (gp * C2.conjugate()) / (1 + gp * (abs(S22)**2 - abs(Det)**2))
rp = csqrt(1l - 2#K*xabs(S12xS21)*gp + (abs(S12%S21)**2)*(gp**2)) / \

abs(1l + gp * (abs(S22)**2 - abs(Det)**2))
print °gp =’, gp

print ’Cp =’, Cp
print ’rp =’, rp
print ’Z1 =’, Z1

Gammal = (Z1-1)/(Z1+1)
print ’Gammal =’, GammaL

GammaS = (S11 + (S12*S21*Gammal)/(1 - S22xGammal)) .conjugate ()
print ’GammaS =’, GammaS

Zs = (1+GammaS)/(1-GammaS)
print ’Zs =’, Zs

15

