

The Magic of Data Compression

“From something to nothing and back again”

David Gow
2013

Lossless Compression

● The input is exactly the same as the output: no
information is lost.

● “Information Theory”

● Find and elminiate redundancy

● NOT ALL DATA IS COMPRESSABLE!

RLE

● Run Length Encoding

● Very simple

● Good at compressing “runs” of repeated characters

● Can have different unit sizes: 8-bit, 16-bit

RLE

C A A A A A T

C 5 ∗ A T

RLE Decoding

● → next

● if (next == marker)

– → count

– if count == 0

● ←marker
– else

● → value
● ← value (count times)

● else

– ← next

RLE Encoding

● →value

● if (value == prev)

– count++

● else

– if (count > 3)

● ← marker
● ← count
● ← value

– else

● ← value (count times)
– prev = value

– count = 0

LZ

● Lempel-Ziv

● Use words from a dictionary or back-references

● Lots of different varieties

– LZ77 (This is the one we'll be looking at)

– LZ78 (Dictionary)

– LZW (Complicated LZ78, used in .gif)

– LZMA (7zip, markov chains)

LZ

B A N A N A N

2←4 A

A

B A N

LZ Decoding

● →value

● if (value == marker)

– → [offset,count]

– if (count = 0)

● output marker
– else

● copy count bytes at offset
● else

– output marker

LZ Encoding

● Concept of a sliding-window

● Look back N bytes and search for the best sequence to
copy

● There are some clever ways of speeding this up

● Very simple LZ implementation (in C):
http://www.ucc.asn.au/tech/2013/0x01_sulix/fastlz.c

http://www.ucc.asn.au/tech/2013/0x01_sulix/fastlz.c

Huffman

● Entropy coding

● Choose code size based on frequency

● e.g. E → 3 bits, Z → 11 bits

● Has a 'dictionary'

– Also known as a table or tree

– It's generated as a tree
● See also: Arithmetic coding, Range coding

Huffman

T

E S

0

0

1

1

TEST = 0 10 11 0

Huffman: Building trees

● Count all of the bytes in the source (or reference) data

– You need the frequencies that characters occur
● Take the two nodes with the lowest frequencies and

'merge' them

– Replace them in the list with a single node that has
both original nodes as children

● Repeat: you'll end up with the optimal huffman tree.

Huffman: Decoding

● → bit

● if bit == 0:

– currentNode = currentNode.left

● else:

– currentNode = currentNode.right

● if currentNode.character:

– ← currentNode.characyer

– currentNode = rootNode

Huffman Encoding

● Build a <character → bits> map

– Traverse the tree backwards.
● Loop through characters in input and output

corresponding bits

● Don't forget to make sure the encoder and decoder have
the same dictionary.

● See the code here:
http://www.ucc.asn.au/tech/2013/0x01_sulix/huff.c

– The code that got me into compression! :)

http://www.ucc.asn.au/tech/2013/0x01_sulix/huff.c

Deflate

● Not going into this in detail

● Basically LZ + Huffman

● A few different 'block' methods:

– Uncompressed

– LZ + Huffman with pre-arragned dictionary

– LZ + Huffman with embedded dictionary
● Used in zip, zlib, gzip, png, “the web” and pretty much

everything you've ever heard of.

Lossy Compression

● Loses some information about the input file

● Try to remove bits which people don't notice

● Used in media

– MP3/AAC/Ogg Vorbis

– JPEG

– MPEG/h.264

– and friends!

MP2 (Roughly)

● Predecessor to MP3

● Take an audio stream and split it into “frames” a few tenths
of a second long

● Split each frame into 32 frequency bands.

● Remove the frequency bands that are difficult to hear.

– The ones with the lowest “power”

– The ones which are too high for the human ear

– The ones which are “masked” by nearby powerful bands
● A “psychoacoustic” model

Fourier: The Frequency Domain

● Frequency is a better match for the human ears than time (to
a point)

● Convert 'frames' entirely to be a function of frequency

● The Fourier Transform

● Basically finding coefficients for sin() and cosine() functions

∫−∞

∞

f (x)e−2π i x ζd x

Fourier: The Frequency Domain

That cat has some serious periodic components

Fourier vs Cosine!

● The Fourier transform is good!

● But it doesn't “constrain power” to the lower frequencies
well.

● This makes it less efficient for codecs like JPEG and Ogg
Vorbis

● Use the Discrete Cosine Transform (DCT) instead

JPEG

● Switching tracks from audio to image

● JPEG: named after its creators:

– Joint Photographic Experts Group

– Designed for photographs

JPEG

● Break the image up into 16x16 px squares (macroblocks)

● Break up each macroblock into SIX 8x8 pixel squares
(blocks)

– 4 greyscale

– 2 colour (scaled)
● Each block undergoes the 2D DCT

● Frequency values are quantized

– This is the actual lossy compression bit
● Final bitstream is Huffman compressed

JPEG: Chroma Subsampling

JPEG: DCT

JPEG

● Quantization is greater for higher frequencies

– The human eye picks up on them less than lower
frequencies

● One can sometimes see “blocking” artefacts when a
JPEG is stored in low quality.

● Also “ringing” artefacts when
too much power is given to
high-frequency components.

Ogg Vorbis

● Ogg Vorbis

– Open source audio codec (coder-decoder)

– Vorbis is the actual audio codec, Ogg is a “container”
● Uses a MDCT (Modified Discrete Cosine Transform) on

OVERLAPPING audio frames

● Frames are quantized.

● Similar psy optimizations to MP2/MP3

● Spectral energy at certain frequency bands are
preserved

MPEG

● Sort-of like lots of JPEGs

● Same 16x16 px macroblock → 6 8x8 px block structure

● Same DCT

● Three types of frame: I-frame, P-frame and B-frame

● Blocks can either be stored completely or store the
differences from the previous frame

● Motion compensation: store the location of the most
similar block in the previous frame

MPEG

I have a thing for corrupt women.

To the future...

● New audio codec: OPUS

– Combines Skype's speech codec with “CELT”

– IETF standard, very good a lower bitrates
● The next barrage of Video codecs:

– HEVC (h.265): Almost done, bascially h.264 but
fancier

– VP9: WebM but fancier

– Daala: Xiph.org next-gen video codec with overlapping
transforms (still in the planning stage)

The End

Questions and Chit-chat

Arithmetic coding

● Like Huffman

● Instead of a simple binary tree, you have a weighted n-ary tree.

● Convert an entire stream into a single number

● For each incoming symbol:

– Split the current range into different sized intervals

– e.g. [0-0.25] = 0, [0.25-1] = 1

– Then recurse: [0-0.2] = 00, [0.2-0.25] = 01

– Then just store a decimal within the correct region for the file
● More efficient than Huffman: theoretically ideal etropy coder

● Patents!

JPEG Zigzagging

h.264 / MPEG4 AVC

● Like MPEG

● In-loop deblocking filter

● Support for 4x4 transforms

● Uses a custom integer HCT (h.264 cosine transform)

– Plus a Hadamard transform for DC
● Sub-pixel motion prediction

● 10-bit channels (Still new)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

