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Lossless Compression

● The input is exactly the same as the output: no 
information is lost.

● “Information Theory”

● Find and elminiate redundancy

● NOT ALL DATA IS COMPRESSABLE!



  

RLE

● Run Length Encoding

● Very simple

● Good at compressing “runs” of repeated characters

● Can have different unit sizes: 8-bit, 16-bit
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RLE Decoding

●  → next

● if (next == marker)

–  → count

– if count == 0

● ←marker
– else

●  → value
●  ← value (count times)

● else

–  ← next



  

RLE Encoding

● →value

● if (value == prev)

– count++

● else

– if (count > 3)

●  ← marker
●  ← count
●  ← value

– else

●  ← value (count times)
– prev = value

– count = 0



  

LZ

● Lempel-Ziv

● Use words from a dictionary or back-references

● Lots of different varieties

– LZ77 (This is the one we'll be looking at)

– LZ78 (Dictionary)

– LZW (Complicated LZ78, used in .gif)

– LZMA (7zip, markov chains)
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LZ Decoding

● →value

● if (value == marker)

–  → [offset,count]

– if (count = 0)

● output marker
– else

● copy count bytes at offset
● else

– output marker



  

LZ Encoding

● Concept of a sliding-window

● Look back N bytes and search for the best sequence to 
copy

● There are some clever ways of speeding this up

● Very simple LZ implementation (in C): 
http://www.ucc.asn.au/tech/2013/0x01_sulix/fastlz.c

http://www.ucc.asn.au/tech/2013/0x01_sulix/fastlz.c


  

Huffman

● Entropy coding

● Choose code size based on frequency

● e.g. E → 3 bits, Z → 11 bits

● Has a 'dictionary'

– Also known as a table or tree

– It's generated as a tree
● See also: Arithmetic coding, Range coding
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Huffman: Building trees

● Count all of the bytes in the source (or reference) data

– You need the frequencies that characters occur
● Take the two nodes with the lowest frequencies and 

'merge' them

– Replace them in the list with a single node that has 
both original nodes as children

● Repeat: you'll end up with the optimal huffman tree.



  

Huffman: Decoding

●  → bit

● if bit == 0:

– currentNode = currentNode.left

● else:

– currentNode = currentNode.right

● if currentNode.character:

–  ← currentNode.characyer

– currentNode = rootNode



  

Huffman Encoding

● Build a <character → bits> map

– Traverse the tree backwards.
● Loop through characters in input and output 

corresponding bits

● Don't forget to make sure the encoder and decoder have 
the same dictionary.

● See the code here: 
http://www.ucc.asn.au/tech/2013/0x01_sulix/huff.c

– The code that got me into compression! :)

http://www.ucc.asn.au/tech/2013/0x01_sulix/huff.c


  

Deflate

● Not going into this in detail

● Basically LZ + Huffman

● A few different 'block' methods:

– Uncompressed

– LZ + Huffman with pre-arragned dictionary

– LZ + Huffman with embedded dictionary
● Used in zip, zlib, gzip, png, “the web” and pretty much 

everything you've ever heard of.



  

Lossy Compression

● Loses some information about the input file

● Try to remove bits which people don't notice

● Used in media

– MP3/AAC/Ogg Vorbis

– JPEG

– MPEG/h.264

– and friends!



  

MP2 (Roughly)

● Predecessor to MP3

● Take an audio stream and split it into “frames” a few tenths 
of a second long

● Split each frame into 32 frequency bands.

● Remove the frequency bands that are difficult to hear.

– The ones with the lowest “power”

– The ones which are too high for the human ear

– The ones which are “masked” by nearby powerful bands
● A “psychoacoustic” model



  

Fourier: The Frequency Domain

● Frequency is a better match for the human ears than time (to 
a point)

● Convert 'frames' entirely to be a function of frequency

● The Fourier Transform

● Basically finding coefficients for sin() and cosine() functions

∫−∞

∞

f (x)e−2π i x ζd x



  

Fourier: The Frequency Domain

That cat has some serious periodic components



  

Fourier vs Cosine!

● The Fourier transform is good!

● But it doesn't “constrain power” to the lower frequencies 
well.

● This makes it less efficient for codecs like JPEG and Ogg 
Vorbis

● Use the Discrete Cosine Transform (DCT) instead



  

JPEG

● Switching tracks from audio to image

● JPEG: named after its creators:

– Joint Photographic Experts Group

– Designed for photographs



  

JPEG

● Break the image up into 16x16 px squares (macroblocks)

● Break up each macroblock into SIX 8x8 pixel squares 
(blocks)

– 4 greyscale

– 2 colour (scaled)
● Each block undergoes the 2D DCT

● Frequency values are quantized

– This is the actual lossy compression bit
● Final bitstream is Huffman compressed



  

JPEG: Chroma Subsampling



  

JPEG: DCT



  

JPEG

● Quantization is greater for higher frequencies

– The human eye picks up on them less than lower 
frequencies

● One can sometimes see “blocking” artefacts when a 
JPEG is stored in low quality.

● Also “ringing” artefacts when
too much power is given to
high-frequency components.



  

Ogg Vorbis

● Ogg Vorbis

– Open source audio codec (coder-decoder)

– Vorbis is the actual audio codec, Ogg is a “container”
● Uses a MDCT (Modified Discrete Cosine Transform) on 

OVERLAPPING audio frames

● Frames are quantized.

● Similar psy optimizations to MP2/MP3

● Spectral energy at certain frequency bands are 
preserved



  

MPEG

● Sort-of like lots of JPEGs

● Same 16x16 px macroblock → 6 8x8 px block structure

● Same DCT

● Three types of frame: I-frame, P-frame and B-frame

● Blocks can either be stored completely or store the 
differences from the previous frame

● Motion compensation: store the location of the most 
similar block in the previous frame



  

MPEG

I have a thing for corrupt women.



  

To the future...

● New audio codec: OPUS

– Combines Skype's speech codec with “CELT”

– IETF standard, very good a lower bitrates
● The next barrage of Video codecs:

– HEVC (h.265): Almost done, bascially h.264 but 
fancier

– VP9: WebM but fancier

– Daala: Xiph.org next-gen video codec with overlapping 
transforms (still in the planning stage)



  

The End

Questions and Chit-chat



  

Arithmetic coding

● Like Huffman

● Instead of a simple binary tree, you have a weighted n-ary tree.

● Convert an entire stream into a single number

● For each incoming symbol:

– Split the current range into different sized intervals

– e.g. [0-0.25] = 0, [0.25-1] = 1

– Then recurse: [0-0.2] = 00, [0.2-0.25] = 01

– Then just store a decimal within the correct region for the file
● More efficient than Huffman: theoretically ideal etropy coder

● Patents!



  

JPEG Zigzagging



  

h.264 / MPEG4 AVC

● Like MPEG

● In-loop deblocking filter

● Support for 4x4 transforms

● Uses a custom integer HCT (h.264 cosine transform)

– Plus a Hadamard transform for DC
● Sub-pixel motion prediction

● 10-bit channels (Still new)
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