
RDCS423 Tutorial Problems #4 - Time Augmented and Stochastic Petri nets

1. We have a data acquisition system that has a single data channel acquired at a clock rate of $T_1 = 4$ time units. The acquisition time is $T_2 = 3$ time units and the data is preprocessed by different processes that are activated on alternate data points. These different processes perform data conversion ($T_3 = 4$ and $T_5 = 3$ time units respectively) and data normalization ($T_4 = 5$ and $T_6 = 6$ time units respectively). The data is then combined ($T_7 = 1$ time unit) and then a moving average filter process is performed ($T_8 = 2$ time units). Old data used in the filter process is removed by another process ($T_9 = 3$ time units) and the final stage records the processed data point ($T_{10} = 4$ time units).

For this system, produce a Petri net graph to model all processes and augment it with process time information. Derive the constraints imposed on the process times making use of the notion of *safeness in the presence of time*. Determine if the system can achieve the specified time constraints.

2. Given the following SPN model for a system with the specified transition rates, determine the average time for token return to place p_1 .

3. Given the control software for a two machine flexible manufacturing system with one assembly process each sharing a common tool, and the following transition rates:

$$\begin{split} \lambda_1 &= 6 \text{ (process 1 waiting)} \\ \lambda_2 &= 7 \text{ (process 2 waiting)} \\ \lambda_3 &= 9 \text{ (process 1 active)} \\ \lambda_4 &= 10 \text{ (process 2 active)} \end{split}$$

On average, what fraction of time is the first process using the shared tool as a percentage of the total assembly time?