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RDCS423 Tutorial Problems and Solutions #2 - Time Handling  
 
 
1. A master-slave clock algorithm was used to synchronize a slave processor clock.  At the 

start of the update cycle the master clock had  a time of 10:00:00.000000 and the slave 
received the master's clock after 10 µsec at its clock time of 10:00:00.000500.  In the 
second phase of the update cycle, the slave responds with a time of 10:00:00.001000 
which is transmitted to the master in 30 µsec where the master clock reads 
10:00:00.000540.  Assuming that nothing is known about the slave clock errors apart 
from the assumption of a zero-mean Gaussian distribution, what is the clock update that 
would be sent from the master to the slave? 

 
 
2. With a master-slave clock algorithm, show that a bound on the maximal clock error 

between slaves would be given by the following expression: 
 

  2 2τ δmax ( ) max ( )j j j j+ ∈  
 
 where j  =  1 .. number of slaves 
  δj  =  the drift rate (in sec/sec) for slave j 
  ∈ j  =  ( µ i

j - µ j
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  τ  =  update period (sec) 
µ i

j ,  µ j
i   =  mean master-slave and slave-master communication times respectively 

  E j
1 , E j

2   =  mean slave clock error distribution times 
 
 
3. Given a fundamental ordering distributed clock algorithm, develop a bound for the 

variation of each clock in a distributed network with a communication graph of diameter 
d.   Calculate this bound for a case with a clock drift rate of 0.001, message update rate 
of 10 msec, upper bound on message delays of 10 µsec, and a communication graph 
diameter of 10 hops. 

 
 
4. With a distributed clock algorithm that uses a minimize maximum error approach, 

determine what clock update is performed from node j given the following states at node 
i and node j at the time of the update cycle: 

 
 At node i:  let the reset time be 00:00:00.000000, the count time is 00:00:00.001000, the 

drift rate is estimated at 0.01, and the estimated discretization error is 5 µsec. 
 
 At node j:  let the reset time be 00:00:00.000000, the count time is 00:00:00.001020, the 

drift rate is estimated at 0.01, and the estimated discretization error is 20 µsec.  The 
response delay from node i to node j is 5 µsec. 
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Solutions: 
 
1. 
 
 
 
 
 
 
 
 
 

•  slave computes d1 = C(T2) - C(T1) = 500 and sends to master 
•  master computes d2 = C(T4) - C(T3) = -460 
•  master computes slave clock skew ξ1 = (d1 - d2)/2 - ( µi

j - µ j
i )/2 + ( E j

1 - E j
2 )/2 

            = [500 - (-460)]/2 - [10-30]/2 
            = 490 µsec 

•  the slave clock skew is sent to the slave for update 
 
 
2. In the first instance assume no drift and recall that: 

(d1 - d2)/2 = ξj  + ( µi
j - µ j

i )/2  - ( E j
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2 )/2 
 
Now each slave introduces an error via the update algorithm and if this error is 

∈ j  = ( µi
j - µ j

i )/2  - ( E j
1 - E j

2 )/2  = (d1 - d2)/2  
then ξj  = 0 and the clock skew is found to be zero → this error cannot be removed if 
(worst case) this is maintained on each successive cycle. For a number of cycles this 
residual error is: 

   ∈ j =  ( µi
j - µ j

i )/2 - ( E j
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2 )/2 
 

Because each slave may have a persistent error ranging from |∈ j| to -|∈ j| with respect to 
the master, the maximal clock difference between slaves is 2 max ( )j j∈ . 

 
 With the drift term δj included, in an interval τ, the error introduced is just τδj.  As the 

drift can range from |δj| to -|δj| with respect to the master → the maximal clock 
difference between slaves due to drift is 2τ δmax ( )j j . 

 
 Combine the terms to give the maximal clock error between slaves: 
  2 2τ δmax ( ) max ( )j j j j+ ∈  
 
 
 3.       Clock drift rate is δ 
       Message update rate is τ 
       Message delay:  µ < D < η  

Communication graph max distance is d 
       Between any two nodes we have a worst case drift in 
       τ seconds of 2δτ seconds. 
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Within a message update interval clocks could have drifted apart by 2δτ.  With the worst 
communications delay of η seconds the error between directly connected nodes is then 
2δτ + η  
 
Also worst case, a sequence of updates must traverse d hops incurring an error of 2δτ + 
η on each step →  the bound on correctness of any two clocks in this network is: 

  ∀ ∀ < +i j C t C t di j: ( ) - ( ) ( )2δτ η  
 with δ = 0.001, τ = 0.01, η = 10-5, d = 10  →  C t C ti j( ) - ( )  < 300 µsecs 
 
4.   
 
 
 
 
 
 

Response from node i:  after request from node j 
  Ei(t) = ∈ i + [Ci(t) - ρi] δi = 5 + (1000)0.01 =15 µs 
  Send [Ci(t), Ei(t)] = [00:00:00.001000,15] to node j 
 

Synchronizer at node j:  
Receive [Ci(t), Ei(t)] from node i 
Ej(t) = ∈ j + [Cj(t) - ρj] δj = 20 + (1020)0.01 = 30.2 µs 
 →  [Cj(t) - Ej(t), Cj(t) + Ej(t) ] = [00:00:00.0009988, 00:00:00.0010502] 
       [Ci(t) - Ei(t), Ci(t) + Ei(t) ] = [00:00:00.000985, 00:00:00.001015] 
which clearly has a non-empty intersection interval 
and Ei(t) + (1+δj) µi

j   =  15 + (1+0.01)5 = 20.05  ≤  Ej(t) 
 

→ both conditions to use the time from node i are met so the synchronizer at node j 
will reset its clock, update the error and reset time: 

 
 Cj(t)  ←  Ci(t) = 00:00:00.001000 
 ∈ j  ←  Ei(t) + (1+δj) µi

j  = 20.05 µs 
 ρj  ←  Ci(t)  = 00:00:00.001000 

 
 
 

node j:  synchronizer rule 
  -  every τ secs  

node i:  response rule 
 

request 

[Ci(t), Ei(t)] 


