
RDCS 423 - Real-time Distributed Computer Systems de/p1

REAL-TIME DISTRIBUTED SYSTEMS -
DEFINITIONS AND EXAMPLES

These two types of systems are readily combined because:
• Most distributed systems (of any complexity) have some

temporal performance constraints, and
• Most real-time systems (of any complexity) have multiple

distributed processing elements.

Common features:
• We have sufficient complexity and/or sufficiently rigorous

performance specifications to justify considerable design
effort - e.g. safety/mission/life critical applications.

• Concurrency - co-operating concurrent processes or tasks
that are mostly independent but must communicate at
intervals.

Advantages of concurrent tasking:
• A natural model for many real-world applications - the real-

world is concurrent.
• Separation of functionality - easier to understand and

design.
• Overall reduction in execution time for the system can be

achieved - parallel I/O operations and easy migration to
physical parallelism.

• Improved scheduling flexibility - critical tasks can be
assigned an appropriately high priority.

Disadvantages of concurrent tasking:
• Too many concurrent tasks can produce an overly complex

design - increased scheduling and communication overhead.
• More difficult to model and verify performance.

RDCS 423 - Real-time Distributed Computer Systems de/p2

REAL-TIME SYSTEMS

Significant feature - 'correctness' of operation is dependant on:
• logical and functional operation
• temporal properties

Oxford Dictionary of Computing Definition:

"Any system in which the time at which output is produced
is significant. This is usually because the input corresponds
to some movement in the physical world, and the output has
to relate to that same movement. The lag from input time to
output time must be sufficiently small for acceptable
timeliness"

Timeliness must be evaluated with respect to some timescale:

 • avionics or nuclear power plant control - response times of
msec are required.

 • e-commerce - response times of seconds
 • mineral processing - response times of several seconds

A broad classification of Real-Time Systems:
• hard - critical that responses occur within a deadline or the

system fails
• soft - system still functions if deadlines are missed but some

"responsiveness" is desired (we could call these interactive
systems)

• batch - no coupling with Real-Time at all

Another important characteristic of RT systems is the strength
of the coupling they have with the real physical world through
instrumentation, e.g. usually doing some monitoring and/or
control of some physical process.

RDCS 423 - Real-time Distributed Computer Systems de/p3

Typically, the RT system is a component in a much larger
engineering system - they have also become known as
embedded systems:

System Managment and Control

sensor data Real World

- plant

- process

Signal processing/
control algorithm

Signal processing/
control algorithm

Sensor
I/O driver

Sensor
I/O driver

actuator data

sensor control

actuator control

Man-machine
Interfaces

A distinguishing feature of embedded systems is that they
usually only provide an execute-only environment - the
workload is well-defined and fixed. Transient inputs can be
handled - their processing requirements are predefined and are
included in the system design.

Real-Time systems are also reactive systems, i.e. they are event
driven and respond to external stimuli - the response is usually
state dependent as well, e.g. building lift-control.

Real-Time systems are also used in control systems, i.e. they
make control decisions based on input data usually without any
human intervention, e.g. automotive cruise-control.

RDCS 423 - Real-time Distributed Computer Systems de/p4

A Brief Historical Perspective

• Started with replacement of the analogue processing section

of control systems with digital computers in the late 1950's,
e.g. 1959 - replacement of the polymerization unit in an oil
refinery using an RW-300 computer - 26 flows, 32
temperatures and 3 pressures.

• 1962 - Ferranti computer replaced analog instrumentation in

an ICI chemical plant - 129 valves and measured 224 nodes.

• 1960's - Mercury, Gemini & Apollo programs - proprietary

aerospace hardware and early development of fault-tolerant
hardware and software.

• 1970's - Widespread commercial use of embedded systems
exploded with the advent of the minicomputer, e.g. the DEC
PDP family, Data General Nova, Honeywell Microdata 800,
HP 2100, TI 960

• 1980's - Microprocessor technology → upsurge in number of

real-time systems → growth in distributed RT systems, e.g.
Space shuttle computer system - distributed, real-time &
fault-tolerant.

• 1990's - distributed, real-time, fault-tolerant, object-orientated -

e.g. Levi & Agrawala's MARUTI project, Sun Microsystems'
DOE project → SPRING, CORBA, and many others.

• 2000's - move towards highly available, highly reliable and

highly mobile global enterprise information portals with real-time
responsiveness in both B2C and B2B applications.

RDCS 423 - Real-time Distributed Computer Systems de/p5

DISTRIBUTED SYSTEMS

Concurrent applications executing on multiple nodes which are
usually physically distributed. The huge increase in distributed
systems applications is mostly due to the removal of constraints
on computer/information systems designers:

• improved interconnection capability
• improved processor capacity
• improved software design methodology
• improved scalability
• improved cost-benefit ratio

Consider the historical evolution via this basic configuration:

Large Host Computer
I/O

PC

PC

PC

Mass Storage

Distributed processing – initial aim was to off-load functionality
from mainframes to PC's, e.g. word processing, spreadsheets, or
private database products.

Many variations on this structure are possible, e.g. I/O could be
a minicomputer → a hierarchy of processing systems.

An common extension to this arrangement is the peer
interconnection - i.e. similar capabilities on all interconnected
systems - usually avoids a central point of control and
synchronization. The hierarchic peer interconnection combines
architectural features of both structures, e.g.:

RDCS 423 - Real-time Distributed Computer Systems de/p6

Host

PC PC

Mass Storage

mid-size mid-size

PC PC

Host

PC PC

Mass Storage

mid-size mid-size

PC PC

Host

PC PC

Mass Storage

mid-size mid-size

PC PC

Distributed processing or Parallel/Multi processing?

Only difference is the extent of space-time coherence -
multiprocessors have higher space-time coherence than
distributed systems:

• A typical tightly-coupled multiprocessor has processors that

share devices and memory under the control of the same
operating system.

• A typical distributed system has complete computers with

separate operating systems and separate datasets.

Tightly-coupled Loosely-coupled

Multiprocessors Multiple Computers

Parallel processing Distributed Processing

No-coupling

Historical Perspective:

• mid 1970's - a realization that large centralized systems were

no longer cost-effective for all applications, previously driven
by "economies of scale" - a large number of the same
components in a large machine.

RDCS 423 - Real-time Distributed Computer Systems de/p7

• "Economies of scale" now applied to a large number of less
specialized and lower component count systems.

• Due to underlying technology reasons, I/O devices also

achieved economies of scale → allowed the minicomputer
to move from process control to commercial data processing

• Late 70's - prediction that centralized systems would

disappear - but the software/security complexity of
distributed systems allowed the role of centralized systems to
be reestablished into the 1980's

• 1980's - advent of the PC has also extended the life of

mainframe systems → encouraged the shift of the major
distributed processing model from inter-connected mid-sized
machines to large mainframes surrounded by 100's of PC's.
Mid-sized machines are often interposed at the departmental
level between organizational level mainframe computers

• late 1980's-90's - expansion in network capabilities -

distributed processing systems now approaching I/O system
capability → encouraged connection of large numbers of
mid-range machines

• 2000's - heterogenous mix of processing systems at all levels

from mobile PDAs to large server clusters

• Software support for distributed systems is still the major

problem area - some important issues:

 - different end user 'views' of different systems

 - management of heterogeneous database structures

 - functional decomposition of software

RDCS 423 - Real-time Distributed Computer Systems de/p8

REAL-TIME DISTRIBUTED SYSTEMS - A FEW GOOD
(BAD) EXAMPLES

PATRIOT missile battery radar system
(ref: Science, March 1992)

4
25 Feb. 1991, Dharan, Saudi Arabia - SCUD missile kills 28 US
servicemen when the PATRIOT battery fails to intercept the
missile due to software error.

PATRIOT (mil-spec) processor - 20 years old (24 bits).

Reason for failure: TIME handling fault

Time - maintained by internal clock in 1/10 secs as integer from
start of system operation.

To track SCUD location - time & velocity are converted to reals
(conversion is no more precise than 24 bits).

The effect on the "range-gate" accuracy is proportional to the
target's velocity and length of time the system has been running
→ the range-gate progressively shifts away from the expected
target position with increasing system run time.

Typically: 8 hours run time → 55 m error
 100 hours run time → 687 m error

Error was found by the Israeli military through testing - fault
was notified but the correction to the software arrived one day
too late!

Lesson: not just a real-time related software coding error, but a
design flaw, QA/QC testing failure, and total 'systems' failure.

RDCS 423 - Real-time Distributed Computer Systems de/p9

THERAC-25 Accidents (1985-1987)
(ref: IEEE Computer, July 1993)

• Controller for a dual-mode (photons/electrons) linear
accelerator (25 Mev) for medical radiation treatment

• Single PDP-11/23, using assembly language, one
programmer over several years

• Software performs these functions:
 - monitors machine status
 - setup machine for treatment - moves beam servos
 - activates the beam on/off

• A proprietary operating system was not used - real-time
executive specially written - uses preemptive scheduling for
critical tasks

• Major problems:
 - software allowed concurrent access to shared variables
 - test & set not indivisible
 - race conditions occurred
 - operator actions within narrow time frames was
 necessary to cause the accidents

• Results:
 Several deaths and serious injuries due to over irradiation

• Lessons:
 - too much faith put in software (hardware interlocks
 should not have been removed).

 - poor documentation & test plan (minimal module level
 testing done)

 - getting balance of safe versus "user-friendly" wrong

- "... for complex interrupt-driven software, timing is of
 crucial importance"

RDCS 423 - Real-time Distributed Computer Systems de/p10

Collins class submarines (1993-)
(ref: 25 March 1998 ANAO report #34 www.anao.gov.au/reports.html)

September 1987: ASC contract with Rockwell Ship Systems Australia (now
known as Boeing Australia Limited) for six Collins-class submarines.

September 1993: Combat system software was first scheduled for delivery
and integration into Collins (contract price $837 million). The Tactical Data
Handling Subsystem (TDHS) manages all the electronic data and provides
the means by which targets are engaged.

The Collins-class submarine combat system design utilises multi-function
operator consoles to overcome the disadvantages of dedicated process-unique
operator consoles found in earlier combat systems.

From the ANAO report:
".... there were high-risks that development past 60 per cent of the specified
requirement would be hampered by memory and data processing and
distribution limitations already built into the TDHS system."

Combat System Capability Over Time - Commonwealth’s Assessment

One finding: Need a cost/benefit analysis for the replacement of the
current Tactical Data Handling System with products which are more
technologically advanced and less costly to maintain and enhance.

RDCS 423 - Real-time Distributed Computer Systems de/p11

STS-1 delayed launch (April 1981)
(ref: www.history.nasa.gov/sts1)

The first launch
of the space
shuttle was
delayed for 2
days, at T-20
minutes before
launch.

The backup
computer system
was unable to
synchronize with
the redundant set
of primary computers (all AP-101B’s).

A change 2 years earlier to a module performing bus initialization →
record containing a time 40 msec in error was sent to the
synchronization data area (which was not picked up by testing or caused
a problem). One year later this time was increased to 65 msec due to
another change and this resulted in a 1 in 67 chance of synchronization
failure.

For the first launch this bus synchronization timing error occurred and
three of the four primary computers were synchronized one cycle late
relative to the first computer → they could not agree.

A fail-safe device prevented the fifth backup computer initializing when
the other four were not in agreement → failed to initialize → launch
automatically aborted.

AND importantly the difference in the synchronization module on the five
computers was related to the different origins of the software – IBM for
the primary avionics software and Rockwell for the backup avionics
software (running on the fifth computer).

RDCS 423 - Real-time Distributed Computer Systems de/p12

"What really happened on Mars?" (Dec 1997)
(ref: http://www.research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account)

The NASA Mars Pathfinder vehicle used a single processor (RS6000) on a
VME bus for all spacecraft control. The VME bus contained interface cards
for the radio transceiver, camera, and a 1553 high speed Mil-spec interface
bus. The 1553 bus was used to interface to various spacecraft systems: e.g:
thrusters, sensors and the meteorological (ASI/MET) payload.

The software was implemented on VxWorks (a commercial RTOS)
using pre-emptive priority scheduling of tasks. An 8 Hz primary cycle
rate was inherited from hardware and software reused from an earlier
spacecraft (Cassini).

Task priorities: Scheduler

Spacecraft entry and landing
Data distribution
Other spacecraft functions & then science functions

Data collected from the 1553 bus is collected in a double buffered shared
memory area and delivered via IPC mechanisms (i.e. pipe()). Tasks wait on
various IPC queues using a select() mechanism to wait for messages.

Under high data load the Data distribution task was still running when the
Scheduler task was executed which caused a deliberate hardware reset and
termination of the commanded activity for the day.

The key cause of the failure was priority inversion (the Data distribution
task was blocked by a much lower priority ASI/MET science task that held
a shared resource). Several medium priority tasks ran pre-empting the
ASI/MET task delaying the return of the shared resource and causing the
intermittent priority inversion → system reset → loss of data.

125 msec

1553 bus active Data distribution Scheduler

Tasking timeline

