Emulation

An introduction to CPU emulation
By John Hodge [TPG]




Introduction

- Emulation makes one computer or system
look like another.

- Using a wrapper API (wine)
- Emulating the CPU and providing an API
- Providing an entire “Virtual Machine”




Emulation Techniques

» Pure Interpreters
- Step by step emulation of each instruction
« JIT

- Converts blocks of code into native code
- Far more bug prone




Emulation Techniques

- Composite
- JITs simple/common instructions
- Uses caching on common methods/loops

- AOT

- Passes a JIT over the code once and stores
the result

— Doesn't work for some cases (annoyingly
common cases)




How to make an interpreter

» A quick introduction to writing a CPU
interpreter.

- Step 1: Learn the architecture
- Step 2: Planning
- Step 3: Write!




Learn the Architecture

Read the manuals and look at code for it

Also, writing code for the architecture helps
you understand it.

Find the things that could trip you up
"Unreal mode" in x86 is an example
Look for patterns to keep your code clean

Example: x86's ALU operations

Seeing the pattern reduces the required code
segments from sixty-four, to sixteen (eight
for the operations, eight for the arguments)

e




e ee—

Plan the structure

» ldentify the CPU's registers and organise
them.

» Think of what state will be needed during
decoding

* Place this into a skeleton structure




Write!

» Create a simple, almost pseudo-code,
structure

» Populate it with the patterns to decode the
iInstructions

» Keep the main decoder function simple by
abstracting common sections of code




Example: RME

 Real Mode Emulator

- Emulates an x86 series processor that is in 16-
bit mode.

— Designed for use in operating system kernels.




W e e —— —

Overview

 Machine State Structure

- 8 GP Registers, 4 Segment Registers, IP and
FLAGS

— Decoder variables




Overview

* Error handling

— All functions return zero on success
- “ret = func(); if(ret) return ret;”
- Memory access abstraction
- ReadMem(CPU, Segment, Offset, size, dest)




Instruction Formats

» Opcode

- One or more bytes
» OxOF starts a multi-byte sequence

* Mod R/M Byte

- Extra byte to encode source and destination,
or extra opcode information

- 2:3:3 —Mod : Reg : Mem

- Mod selects the offset of the memory address,
or marks Mem as a register.




Instruction Formats

* Mod/RM - ALU
- Memory on Register, Register on Memory and
Immediate on Accumulator (AX)

* These three encode the operation in the
opcode and use both Reg and Mem as points.

- Immediate on Memory
» Operation is encoded in the Reg field.




Instruction Formats

* Directly Encoded
- PUSH and POP

» Operands are encoded in the opcode
— Conditional Jumps

- STOS, LODS and MOVS

* Implicitly uses a combo ES:[DI], DS:[SI] or AX
(Depending on the instruction)




Catches

» Operand and Address overrides
- Makes the code more complex
* Flag Values

- Setting flag values correctly requires care




Tricks

- Adrian will hate me for some of these :D
» Macros are your friend

- But make sure to use them wisely
* Inline functions

- Where you start getting big macros, put them
In an inline function.




