

An introduction to CPU emulation
By John Hodge [TPG]

Emulation

Introduction

● Emulation makes one computer or system
look like another.

– Using a wrapper API (wine)

– Emulating the CPU and providing an API

– Providing an entire “Virtual Machine”

Emulation Techniques

● Pure Interpreters
– Step by step emulation of each instruction

● JIT
– Converts blocks of code into native code

– Far more bug prone

Emulation Techniques

● Composite
– JITs simple/common instructions

– Uses caching on common methods/loops

● AOT
– Passes a JIT over the code once and stores

the result

– Doesn't work for some cases (annoyingly
common cases)

How to make an interpreter

● A quick introduction to writing a CPU
interpreter.

– Step 1: Learn the architecture

– Step 2: Planning

– Step 3: Write!

Learn the Architecture

● Read the manuals and look at code for it
– Also, writing code for the architecture helps

you understand it.

● Find the things that could trip you up
– "Unreal mode" in x86 is an example

● Look for patterns to keep your code clean
– Example: x86's ALU operations

– Seeing the pattern reduces the required code
segments from sixty-four, to sixteen (eight
for the operations, eight for the arguments)

Plan the structure

● Identify the CPU's registers and organise
them.

● Think of what state will be needed during
decoding

● Place this into a skeleton structure

Write!

● Create a simple, almost pseudo-code,
structure

● Populate it with the patterns to decode the
instructions

● Keep the main decoder function simple by
abstracting common sections of code

Example: RME

● Real Mode Emulator
– Emulates an x86 series processor that is in 16-

bit mode.

– Designed for use in operating system kernels.

Overview

● Machine State Structure
– 8 GP Registers, 4 Segment Registers, IP and

FLAGS

– Decoder variables

Overview

● Error handling
– All functions return zero on success

– “ret = func(); if(ret) return ret;”

● Memory access abstraction
– ReadMem(CPU, Segment, Offset, size, dest)

Instruction Formats

● Opcode
– One or more bytes

● 0x0F starts a multi-byte sequence

● Mod R/M Byte
– Extra byte to encode source and destination,

or extra opcode information

– 2:3:3 – Mod : Reg : Mem

– Mod selects the offset of the memory address,
or marks Mem as a register.

Instruction Formats

● Mod/RM - ALU
– Memory on Register, Register on Memory and

Immediate on Accumulator (AX)
● These three encode the operation in the

opcode and use both Reg and Mem as points.

– Immediate on Memory
● Operation is encoded in the Reg field.

Instruction Formats

● Directly Encoded
– PUSH and POP

● Operands are encoded in the opcode

– Conditional Jumps

– STOS, LODS and MOVS
● Implicitly uses a combo ES:[DI], DS:[SI] or AX

(Depending on the instruction)

Catches

● Operand and Address overrides
– Makes the code more complex

● Flag Values
– Setting flag values correctly requires care

Tricks

– Adrian will hate me for some of these :D

● Macros are your friend
– But make sure to use them wisely

● Inline functions
– Where you start getting big macros, put them

in an inline function.

